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Abstract

This paper studies the undirected partial-correlation stock network for the Spanish 
market that considers the constituents of IBEX-35 as nodes and their partial correla-
tions of returns as links. I propose a novel methodology that combines a recently 
developed variable selection method, Graphical Lasso, with Monte Carlo simula-
tions as fundamental ingredients for the estimation recipe. Three major results 
come from this study. First, in topological terms, the network shows features that 
are not consistent with random arrangements and it also presents a high level of 
stability over time. International comparison between major European stock mar-
kets extends that conclusion beyond the Spanish context. Second, the systemic im-
portance of the banking sector, relative to the other sectors in the economy, is quan-
titatively uncovered by means of its network centrality. Particularly interesting is 
the case of the two major banks that occupy the places of the most systemic players. 
Finally, the empirical evidence indicates that some network-based measures are 
leading indicators of distress for the Spanish stock market.

Keywords: Network Theory, Stock Markets, Systemic Risk Indicators.

JEL Classification: G01, G12, G17, C45, C58.
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1 Introduction

Nobody can disagree that we live a networked life. Our interactions are embedded 
in different systems that can be thought as networks. Examples include the social 
network of real and virtual acquaintance (Twitter, Facebook), the Internet, the 
World Wide Web, distribution networks such as airport transportation flow or post-
al delivery routes, the economic and financial network, the network of academic ci-
tation and the list is easily extendable, Newman (2003). As a consequence of the re-
cent financial crisis, the fields of economics and finance have captured the attention 
of network researchers aiming to revise and extend established theoretical frame-
works. Schweitzer et al. (2009) presents the future challenges for this discipline 
while Allen and Babus (2009) and Jackson (2014) set out the salient theoretical find-
ings achieved so far. Additionally, prominent policymakers, such as the Executive 
Director of the Financial Stability Department at the Bank of England (at the time 
the speech was made) Haldane (2009) and the current Chair of the Board of Gover-
nors of the Federal Reserve System, Yellen (2013), have argued in favor of the net-
work approach as a valuable tool to enhance our understanding of excessive sys-
temic risk in the financial system.

Recently, several papers studying stock markets through the lens of network theory 
have been published in prestigious academic journals. The current paper contrib-
utes to this branch of literature in three directions. First, I propose an enhanced and 
convenient methodology for estimating a network based on partial correlation for 
stocks that are listed in a particular market. This methodology is grounded in a high-
dimensional setting and allows researchers to control for the statistical significance 
of the underlying network. Second, since the mainstream literature is centered in 
the US market, the current paper contributes to this line of research by targeting the 
Spanish stock market. The aim is to develop new insights into its topological struc-
ture and to quantitatively identify its systemic players. Additionally, four other Eu-
ropean stock markets are included in the study which allows us to compare their 
salient characteristics under the same unified framework. Finally, I provide an em-
pirical assessment accounting for the role of some network-based measures as lead-
ing indicators of financial distress for the Spanish market.

Specifically, I estimate the Spanish Partial-Correlated Stock Network (PCSN) in 
which each node corresponds to a stock comprising the market index, IBEX-35, and 
the links between them account for their return’s partial correlation. I use a daily 
dataset comprising a 10 year sample period starting in Nov-2004 until Sep-2014, 
thus covering both tranquil and crisis periods. Since a sparse partial correlation 
matrix is required in order to detect the skeleton of the market, I estimate such a 
matrix by applying a recently developed Graphical Lasso algorithm by Friedman, 
Hastie, and Tibshirani (2008). Methodologically, the paper presents some improve-
ments when it is compared to the mainstream literature solving, or at least attenuat-
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ing, three of its drawbacks. First, partial correlations of returns are computed in-
stead of direct correlations. This enables us to calculate the co-movements between 
two stocks alone while controlling for the effects exerted by the rest of the firms in 
market. In this regard, a connection between a pair of assets exists as long as they 
are exposed to common factors different from the general market factor. Second, 
Graphical Lasso is a totally automatic and data-driven technique which is grounded 
in a high-multivariate setting. Such a technique permits the estimation of sparse 
partial correlation matrices which in turns allows us to uncover the underlying net-
work structure. Since there is no need to use ad-hoc topological constraints or arbi-
trarily predefined thresholds, as it is the case with traditional methodologies, the 
resulting structure is not distorted by artificial restrictions. Finally, Monte Carlo 
simulations are implemented in order to determine the statistical significance of the 
related network.

Three empirical results come from this study. First, the main indicators of the Span-
ish PCSN show features that are inconsistent with networks made by chance. In 
particular, the evidence supports a fairly stable structure with high levels of transi-
tivity and smaller connected components.1 In addition, four large European mar-
kets, namely the UK, France, Germany and Italy, are included in the analysis for 
comparison purposes. Following the exact same approach for all of them, the evi-
dence shows an astonishing similarity in terms of their topological organization.

Second, an in-depth study of the systemic importance of different economic sectors 
is presented for the abovementioned stock markets. The quantification of the sys-
temic importance of sectors and stocks is based on the notion of network centrality, 
a concept intensively used in the sociological literature. In general terms, the data 
shows a positive and statistically significant relationship between market capitaliza-
tion and stock centrality after controlling for the effects of economic sectors. Moreo-
ver, the importance of economic sectors varies across stock markets since the PCSN 
of Spain, France and Italy are characterized by a greater centrality of the banking 
industry. The cases of Germany and UK are different since for those structures it is 
the utility and industrial sector, respectively, the most influential ones. For specific 
case of the Spanish network, it is particularly interesting to mention the dispropor-
tionally large centrality scores shown by two financial firms, Banco Santander and 
BBVA. This observation is consistent with the conventional wisdom and allows us 
to consider them as the most systemic players in the Spanish market in a very spe-
cific and quantitative fashion.

Third, I investigate the extent to which network-based measures are leading indica-
tors of market distress by means of two complementary approaches. As a first ap-
proach I estimate a Probit model where the dependent variable assumes value one 
when the IBEX-35 drops by more than 3 standard deviations and zero otherwise. 
The set of independent variables includes lagged values of some network measures; 
say density, transitivity and the centrality of the banking sector. The result shows 
that the probability that the Spanish market suffers from large negative movement 
increases when the lagged network becomes denser or when the banking industry 
scores high in centrality. In the second approach it is assumed that the return pro-

1 A list with definitions of network-related concepts is provided in the body of the paper.
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cess of the market index follows an ARCH model. In this model the specification of 
the conditional market volatility includes as independent variables the same set of 
lagged network measures as in the previous approach. The estimation shows that 
the market variance increases with network density and with the centrality of the 
banking sector while it reduces with the level of transitivity.

The remainder of the paper is organized as follows. Section 2 presents a literature 
review regarding the current study. Section 3 defines the Partial-Correlated Stock 
Network and some network-based measures that are going to be used through the 
paper. Section 4 describes the dataset used and the estimation methodology. Section 
5 establishes the main results from the estimation procedure distinguishing be-
tween a static and dynamic analysis. Section 6 provides the statistical assessment of 
some network-based measures acting as leading indicators of market distress. Fi-
nally, section 7 concludes and outlines future research lines.
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2 Literature Review

The literature regarding the study of stock markets throughout network theory can 
be divided into three sub-branches according to their main focus. The first group 
includes those studies focused purely on the topological description of the related 
network and is basically grounded on physics literature. A second group of articles, 
closely linked to the econometric and financial research, relies on the network ap-
proach to get new insights about systemic risk issues. Finally, recent developments 
have used network theory as a promising tool to enhance portfolios’ performances. 
Next, I briefly review the major features from each of these research lines.

Physics literature has been shown to be very productive in using network concepts 
to describe stock markets. Mantegna (1999) and Bonanno, Lillo, and Mantegna 
(2001) were among the first in this endeavor, applying a particular correlation-based 
filtering procedure, the so-called Minimum Spanning Tree (MST), for the US market 
in order to study its skeleton.2 The authors find a hierarchical structure in the stock 
network where its branches were associated with specific economic sectors. In simi-
lar vein, Vandewalle, Brisbois, and Tordoir (2001) estimate the MST also for the US 
stock market providing evidence for power-law degree distributions and connectiv-
ity patterns that are inconsistent with random networks. For applications of this 
approach to markets other than the US or with broader datasets, see Jung et al. 
(2006), Garas and Argyrakis (2007) and Huang, Zhuang, and Yao (2009).

Two variations of this baseline framework are noted. On the one hand, Onnela et al. 
(2003) studies the time-dependent properties of the MST for the US market implement-
ing a moving window approach. The authors call this methodology Dynamic Asset Trees. 
On the other hand Onnela et al. (2003) proposes a threshold approach where correlations 
below a pre-established and arbitrarily chosen threshold are discarded for the construc-
tion of the network. A recent empirical application of this methodology to the US mar-
ket is provided in Tse, Liu, and Lau (2010) where power law degree distributions are also 
reported for sufficiently large value of the threshold. For authoritative summaries of this 
research line see Bonanno et al. (2004) and Tumminello, Lillo, and Mantegna (2010).

The last years have witnessed increased interest in network theory among the finan-
cial research community as a way to shed some light on systemic risk issues. In 
Billio et al. (2012) the authors build a directed Granger-causality network.3 Such a 

2 MST is a filtering technique that allows us to build a connected network of N stocks by joining together 

pairs of them according to their pair correlation (in decreasing order) as long as no loops are formed in 

the structure. The resulting network is a tree network.

3 The authors also measure connectedness through principal components but this approach is not the 

focus of the current paper.
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structure captures the market interconnectedness between financial institutions 
where links account for statistically significant lead-lag relationships between 
monthly returns. Among their results they show i) how the system became much 
more interconnected during and before the last financial crisis ii) evidence on how 
central institutions were the ones with the largest financial losses. Following a simi-
lar approach with strong emphasis on connectedness, Diebold and Yılmaz (2014) 
proposes a network in which connections between financial institutions are as-
signed according to the variance decomposition of the volatility forecast error. This 
approach gives rise to a volatility weighted-directed network finding a clustered in-
teraction between government-sponsored firms and investment banks. Additionally, 
the authors also demonstrate how the cycles of the total connectivity in such struc-
ture coincide with major disruptions in the US market.

Some limitations regarding the study of Billio et al. (2012) are noted. On the one 
hand, pairwise Granger tests could lead to misleading results in a multivariate con-
text. On the other hand, not accounting for correlation in the tails of the return’s 
distributions undermines systemic risk conclusions. These concerns are taken into 
account in Hautsch, Schaumburg, and Schienle (2014) by estimating a tail-risk net-
work, a weighted-directed network in which the links between institutions are given 
by the interconnectedness of firms’ Value-at-Risk. With this network in place, the 
authors compute the systemic relevance of financial firms in terms of their destabi-
lizing power, the so-called realized systemic risk beta. In a closely related paper 
Hautsch, Schaumburg, and Schienle (2014), the authors adapt the tail-risk network 
framework to forecast firms’ systemic relevance.

A far less explored research area relates to the use of network theory as a way to 
support investment choices. As far as I am aware, there are just two articles follow-
ing this line of research, and both use MST in combination with shrinkage covari-
ance estimation techniques as methodological tools. Aiming to build well-diversified 
portfolios, Pozzi, Di Matteo, and Aste (2013) show the improvement in financial 
performance of an investment strategy that assigns wealth toward stocks belonging 
to the periphery of the stock network, the poorly connected stocks. The main as-
sumption in Pozzi, Di Matteo, and Aste (2013) is that the individual dimension of 
stocks (e.g. Sharpe ratio) is uncorrelated with their systemic dimension (its central-
ity score in the network). In Peralta and Zareei (2014) the authors show that this 
correlation is time and market dependent. Therefore, there are times in which cen-
tral stocks also present good individual performances giving rise to a trade-off in the 
portfolio selection process. This fact leads them to create the so-called ρ-dependent 
strategy and to obtain enhanced out-of-sample results out of its implementation 
compared to well-known benchmarks. Finally, it worth mentioning the salient re-
sults in Ozsoylev, Walden, and Yavuz (2014). They study informational diffusion in 
the Istanbul Stock Exchange by using a network where investors (not financial 
firms) are the nodes whereas links relate to the channels through which information 
flows. Among their major contributions it should be remarked that the central inves-
tors receive information signals earlier than peripheral ones allowing them to ben-
efit from early trading advantages and higher returns.
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3 Networks in the Context of Stock Markets

3.1 Defining the Partial-Correlated Stock Network

In general terms, a network is a pair of sets , with { }= …1,2, ,N n  the set 
of nodes and a the set of links connecting pair of them. Then, if there is a link from 
node i to node j, (i,j) ∈ a. A convenient way to arrange the information contained 
in a is by means of the so-called adjacency matrix ⎡ ⎤= ⎣ ⎦ijA A . A is a n × n matrix in 
which Aij ≠ 0 captures the existence of a relationship between node i and node j. 
The network is said to be undirected if A = AT, therefore if (i,j) ∈ a also implies 
(j,i) ∈ a. Note that for undirected network, no causal relationship is attached to 
links and they are visually represented as a line, (j – i). On the other hand, if A ≠ AT, 
the network is said to be directed and Aij entails a causal relationship from node j 
to node i which does not necessarily imply the reverse. In this case, the links are 
visually represented as arrows, (j → i). Further, if { }∈ 0,1ijA , ϕ  is said to be un-
weighted. However, when ∈RijA , such a link also carries information about the 
intensity in the interaction between nodes leading to a weighted network. The read-
er is referred to Newman (2010) and Jackson (2010) for a comprehensive treatment 
of the field.

Before discussing the construction of the Partial-Correlated Stock Network (PCSN), 
it is convenient to refresh the concept of partial correlation between pairs of ran-
dom variables. Let us assume ( )= …r 1 , ,

T

nr r  to be a random vector following a multi-
variate normal distribution with mean vector μ and covariance matrix Σ. The partial 
correlation between ri and rj, denoted by ρij, quantifies the correlation between these 
two variables conditional on the rest. In this Gaussian environment, it is well known 
that ρij = o implies conditional independency between i and j. The inverse of the 
covariance matrix (commonly named as the precision matrix), denoted by 

⎣ ⎦Ω ω−= =1
,i jΣ ⎡ ⎤, contains the fundamental information regarding the partial correla-

tions matrix ρ as follows.

 ΔΩΔρ ρ= = −ij⎣ ⎦⎡ ⎤  (1)

where [ ] [ ]ω= = = ≠1 /     0  iiij ij
for i j and for i jΔ Δ . Simple calculations show that 

the elements of the main diagonal of ρ are (-1) which is meaningless in our frame-
work and therefore I set them equal to zero. It is also important to mention the close 
connection between ρ and regression analysis as it is stated in expression (2) below 
(Stevens (1998)). In such equation βij corresponds to the coefficient in a regression 
where ri is the dependent variable and ( ) { }− = ≤ ≤ ≠:1   kir r k nandk i  are the inde-
pendent ones. Therefore, a zero regression coefficient indicates zero partial correla-
tion and thus conditional independency. In expression (2) σei accounts for the stand-
ard deviation of the residual in the regression where ri is the dependent variable 
(the reader is referred to Appendix A for the formal proof).
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Grounded on the Gaussian Graphical Models literature Whittaker (1990), I define 
two types of undirected PCSN depending on whether the focus is on the weighted 
or on the unweighted version. The weighted PCSN, { }ϕ ρ= ,w N , with N as the set of 
stock under study and the partial correlation matrix of stock’s returns taking the 
place of its adjacency matrix.4 Therefore, for ρij ≠ 0, there is a link connecting stock 
i and j with intensity ρij. The need to include zeros outside the main diagonal of ρ 
(sparsity) is evident since a fully connected network comprises too much informa-
tion to be analyzed. Then, sparsity in the partial correlation matrix is an essential 
feature to be investigated for construction of a valuable and informative PCSN, an 
aspect that is considered in the estimation methodology. The unweighted PCSN, 

{ }ϕ = �,u N  consists of the same set of stocks while its corresponding adjacency ma-
trix  is given by the following rules:

 
ρ

ρ

≠⎧
= ⎨ =⎩

�
1,  0

0,  0
ij

ij
ij

 (3)

3.2 Network-based Measures

It has been empirically proved that different sort of networks, ranging from bio-
logical to engineering networks, show astonishing similarity when some of their 
traits are compared. The cases of small world property, fat-tail degree distribution 
and high clustering are particularly popular in the network literature. Below I com-
ment about those properties while providing a list of fundamental network meas-
ures that are going to be used through the paper. This list is by no mean complete 
and it should be considered as an attempt to enumerate the salient quantities de-
scribing any type of network.

Among the most basic network’s concepts, node-size and link-size, called n and m 
respectively, account for the number of nodes and the number of links in the net-
work. The density d measures the fraction of links that actually exist relative to the 
maximum possible links in the structure. In mathematical terms, ⎛ ⎞= ⎝ ⎠ / 2

nd m .

The degree of node i, ki, is defined as the number of links attached to that node and 
the mean degree of the network, c, captures the average number per node in the 
structure. Formally, c = 2m / N. A closely related and fundamental concept describ-

4 As it was commented, for both φw and φu I discard the information in the main diagonal of the corre-

sponding adjacency matrix to prevent uninformative self-loops.



Network-based Measures as Leading Indicators of Market Instability: The case of the Spanish Stock Market 19

ing any network is its degree distribution, P(k), representing the empirical distribu-
tion of node degrees. That is, P(k) is the fraction of nodes in the network showing 
degree k. When P(k) is bell-shaped most of the nodes in that network show approxi-
mately the same degree or connectivity. However it is surprisingly common to ob-
serve fat-tailed degree distributions in real-world networks, Barabási and Albert 
(1999). This evidence highlights the increased probability of observing nodes that 
are relatively poorly connected co-existing with extremely well connected nodes, 
the hubs. It is typically to model such fat-tail degree distribution by assuming a 
power law form ( ) γγ −= 1

0P k k .

A path between nodes i and j is a sequence of successive links ( ) ( ) ( )−…1 2 2 3 1, , , t ti i i i i i  
such that each ( )+ ∈1s si i a for { }∈ … −1, , 1s t  with i1 = i and it = j. The length of such 
a path is the number of links traversed along that path. The geodesic path between 
nodes i and j is the shortest path between those nodes. The diameter of the network 
is the longest geodesic distance between any two nodes and the mean distance is the 
average over geodesic paths (note that the average distance is bounded above by the 
diameter). An interesting regularity observed in real-world networks is the so-called 
Small Worlds property. This property embodies the idea that the average distance 
and diameter is surprisingly small in comparison to its node’s size. Technically, it is 
said that the mean distance scales logarithmically (or slower) with the node-size. For 
example, in the social network literature, the seminal paper Milgram (1967) give 
rise to the idea of 6 degrees of separation among any two persons in the world. This 
result also remains valid for Facebook since 5 degrees of separation was found in 
Ugander et al. (2011).

A network is said to be connected if there is a path connecting any two nodes in the 
structure, otherwise it is disconnected. When the network is disconnected, each sub-
set of nodes forming a connected sub-network is called a component. In other words, 
a component is a subset of nodes where for each pair of nodes in that subset there 
exists at least one path connecting them. The typical network configuration corre-
sponds to several components with just one of them fulfilling a large proportion of 
the structure. This large component is called the largest component and its size rela-
tive to the total number of nodes in the network is denoted by L. For Facebook, L 
attains a value of 99.91% which basically means that almost any two persons in this 
virtual world are reachable by following the correct path, Ugander et al. (2011).

Another measure worth defining is the degree of assortativity Q. If the correlation 
between the degrees of connected nodes is positive, high (low)-degree nodes tends 
to be connected with other high (low)-degree nodes. This tendency is called positive 
assortativeness or just assortative for short. An assortative network is expected to be 
arranged as a core/periphery structure where the core is composed by highly con-
nected nodes and the periphery by poorly connected ones surrounding the core. For 
the case in which high-degree nodes tends to be connected with low-degree ones, 
the correlation between the degrees of connected nodes is negative and we called 
this tendency as negative assortativeness or disassortative. In this case, the general 
configuration of the network presents star-like features.

In mathematics, a relationship is said to be transitive when A → B and B → C, then 
A → C. In a network context, this relationship means that if node i is connected to j 
and j is connected to k, then i is connected to k. The level of network transitivity T 
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captures the likelihood that any given pair of nodes shares another common neigh-
bor. Mathematically, T is calculated as the ratio between the number of triangles in 
the network divided by the total number of connected triples of nodes. In social 
networks, such a measure tends to be quite high since the probability that a pair of 
friends shows another friend in common is usually large. Particular interesting to 
mention is the fact that some researchers associate large values of T with a network 
structured in communities, Newman and Park (2003).

Most of the measures discussed so far are predominantly macroscopic in nature. 
However, there exist several measures capturing node’s position in a given network. 
These sorts of measures, commonly referred to as centrality measures, are grounded 
in the sociological literature and their main goal is to account for the power or influ-
ence of each node in a given structure, Freeman (1978). Given the extension of this 
literature, I just comment about two of them that have become the standard in net-
work analysis. The simplest node’s centrality measure is degree centrality which 
accounts for the degree of a given node. Therefore, the importance of a node in a 
network is given by the number of links attached to it. This is a local measure that 
discards the information about the network structure beyond the “first friends” of a 
give node. A natural extension to the degree centrality is given by the eigenvector 
centrality due to Bonacich (1972) and Bonacich (2007). Its version for a weighted 
network case is in Newman (2004). In formal terms, the eigenvector centrality of 
node i, vi, is proportional the weighted sum of the centralities of its neighboring 
nodes. Assuming the adjacency matrix of the network is ρ, the eigenvector central-
ity of node i is given by

 
λ ρ−= ∑1i ij j

j

v v
 

(4)

Note that equation (4) shows that a highly central node becomes central either by 
being connected with many other nodes (degree centrality) or by being connected 
with highly central ones. By restating equation (4) in matrix terms, it can be seen 
that the vector of centrality scores, v, is given by the eigenvector of the adjacency 
matrix corresponding to the eigenvalue λ, where the largest eigenvalue is the pre-
ferred choice.5

 λv = ρv (5)

5 It is usual to report the vector of centrality normalized to one, this is also the case for the current paper.
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4 Database Description and Estimation 
Methodology

The period of study covers almost 10 years of daily data starting from Nov 1, 2004 
until Sep 30, 2014. I rely on Datastream for the information about dividends-and-
split adjusted stock prices and returns. Additionally, market value and industrial 
sectors for the selected companies were also used throughout the analysis. The set 
of firms included into the sample comprises the constituents of the index IBEX-35 
at September 2014. Table 1 reports the sample of firms including the corresponding 
ticker, their market value for the last day in the sample, the inception date in the 
index and descriptive statistics for their return distribution.

As it was commented previously, with the aim of capturing the backbone of the Span-
ish stock market, a sparse estimation of the partial correlation matrix is required. A 
dense partial correlation matrix would lead to a fully connected PCSN (a network in 
which each pair of nodes is connected) thus obscuring its salient features. The two 
most popular filtering procedures in the network literature are the Minimum Span-
ning Tree (MST) and the Threshold Method (TM). Both of them present severe draw-
backs. MST retains the highest correlations in accordance with a strong artificial topo-
logical restriction. In particular, this method only considers the largest correlations as 
links between stocks as long as the network becomes connected and no loops of order 
three are formed. Then, if a large association between two nodes exists but taking it 
into consideration implies a triangle in the network, it is discarded. The TM just con-
sists of discarding as links in the network the correlations below a pre-specified thresh-
old and thus, a disconnected structure could result. However, the determination of 
such a threshold represents its major weakness since it is usually pre-specified without 
any theoretical or statistical support. A final comment regards to the application of 
MST and TM to the direct correlation matrix of return instead of the partial correlation 
matrix as it is usually done in the literature. This is another inconvenience since a di-
rect correlation between two stocks could be due to the effect of a third one affecting 
both simultaneously, and thus distorting the resulting pattern of interconnections.

In order to overcome these drawbacks and with the goal of obtaining a statistically 
validated sparse partial correlation matrix that translates into a clearer PCSN, a 
2-Step procedure is proposed. In the first step, I rely on the Graphical Lasso algo-
rithm developed by Friedman, Hastie, and Tibshirani (2008). This approach maxi-
mizes the penalized log-likelihood of a multivariate normal distribution with re-
spect to the precision matrix, Ω.

  (6)

where S is the sample covariance matrix, tr is the trace operator and |Ω|1 is the L1-norm - 
the sum of the absolute values of the elements of Ω. The penalty or regularization param-
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eter γ controls for the amount of shrinkage in the values of the components of Ω. When 
γ = o, the estimation of Ω is just its maximum likelihood estimator, S-1. When the amount 
of regularization increases, γ > o, more parameters are pushed toward zero resulting in 
sparser solutions. Due to the particular form of the restriction in (6), exact zeros are found 
in the results of the algorithm. It is important to determine the value of the shrinking 
parameter in an optimal way. A tradeoff in determining γ exists since lower values of γ 
fit better to the data, at the cost of denser Ω. In the current setting γ is determined by 10-
fold cross validation as it is proposed in Friedman, Hastie, and Tibshirani (2008).6

6 The optimization is implemented through Coordinate Descent algorithm

Descriptive statistics  TABLE 1

Industry / Name Ticker
Inception 

Date
Market Value* Mean **

(1) Median **
Std **

(2) (1)/(2) Min Max$ %
Industrial
ABENGOA B SHARES ABS 25/10/12 3,159 1% 33.2% 0.0% 46.3% 71.7% -2,610.1% 2,952.2%
ABERTIS INFRAESTRUCTURAS ACE 14,049 2% 8.4% 0.0% 24.8% 33.9% -2,584.9% 3,040.8%
ACCIONA ANA 3,393 1% 7.5% 0.0% 37.0% 20.3% -3,262.9% 4,179.6%
ACS ACTIV.CONSTR.Y SERV. ACS 9,690 2% 12.4% 18.7% 28.7% 43.1% -2,523.3% 4,423.2%
AMADEUS IT HOLDING AMS 29/04/10 13,257 2% 22.5% 18.5% 23.5% 96.1% -1,791.9% 1,976.7%
ARCELORMITTAL (MAD) MITT 28/07/06 18,153 3% 1.4% 0.0% 46.8% 3.0% -4,830.1% 4,676.4%
DIST. INTNAC.DE ALIM DIA 05/07/11 3,701 1% 21.1% 0.0% 28.8% 73.2% -1,577.7% 3,076.9%
FERROVIAL FERC 11,354 2% 11.8% 0.0% 35.0% 33.7% -2,834.0% 3,502.2%
FOMENTO CONSTR.Y CNTR. FCC 1,940 0% -0.1% 0.0% 36.0% -0.2% -2,317.1% 3,639.3%
GAMESA CORPN.TEGC. GAM 2,437 0% 8.6% 0.0% 45.1% 19.1% -5,573.9% 5,519.3%
GRIFOLS ORD CL A PROB 17/05/06 6,912 1% 27.1% 0.0% 30.7% 88.4% -3,491.5% 2,992.2%
INDITEX IND 68,177 12% 20.2% 0.0% 27.5% 73.5% -2,580.6% 2,892.9%
INDRA SISTEMAS IDR 1,822 0% 3.2% 0.0% 26.9% 11.8% -1,903.3% 2,296.7%
JAZZTEL JAZ 3,287 1% 22.1% 0.0% 49.4% 44.7% -4,166.5% 6,666.6%
MEDIASET TL5 4,009 1% 3.8% 0.0% 37.2% 10.3% -3,426.3% 3,086.1%
OBRASCON HUARTE LAIN OHL 2,642 0% 21.8% 0.0% 36.9% 59.1% -2,817.7% 3,877.0%
REPSOL YPF REP 25,385 4% 6.9% 0.0% 29.7% 23.1% -3,938.5% 2,984.2%
SACYR SCYR 2,141 0% 4.6% 0.0% 49.1% 9.4% -3,111.4% 5,337.4%
TECNICAS REUNIDAS TECN 21/06/06 2,347 0% 16.8% 5.2% 36.1% 46.6% -3,260.9% 3,505.2%
VISCOFAN VIS 2,023 0% 20.2% 0.0% 25.4% 79.7% -2,012.6% 1,895.7%
Utility
ENAGAS ENAG 6,095 1% 12.1% 5.5% 24.3% 49.9% -2,962.6% 3,700.4%
GAS NATURAL SDG CTG 23,326 4% 7.1% 0.0% 27.9% 25.5% -2,292.7% 3,052.3%
IBERDROLA IBE 35,762 6% 9.8% 0.0% 29.7% 33.1% -3,144.2% 4,699.8%
RED ELECTRICA CORPN. REE 9,274 2% 17.9% 11.6% 24.5% 73.2% -2,177.9% 3,666.2%
TELEFONICA TEF 55,773 10% 2.9% 0.0% 23.4% 12.2% -2,274.2% 2,994.7%
Transportation
INTL.CONS.AIRL.GP. IAG 24/01/11 9,611 2% 15.3% 0.0% 35.0% 43.8% -1,943.0% 2,119.3%
Bank/Savings & Loan
BANCO DE SABADELL BSAB 9,407 2% 1.4% 0.0% 29.3% 4.9% -1,911.1% 4,567.2%
BANCO POPULAR ESPANOL POP 10,186 2% -7.7% 0.0% 36.6% -20.9% -3,079.4% 5,169.3%
BANCO SANTANDER SCH 91,241 16% 8.5% 0.0% 34.2% 24.9% -2,985.3% 5,804.2%
BANKIA BKIA 20/07/11 17,023 3% -28.5% -6.9% 141.1% -20.2% -12,857.1% 47,584.7%
BANKINTER 'R' BKT 6,037 1% 11.2% 0.0% 36.7% 30.7% -2,016.5% 3,626.2%
BBV.ARGENTARIA BBVA 56,697 10% 5.1% 0.0% 34.0% 14.9% -3,195.0% 5,507.0%
CAIXABANK CABK 10/10/07 27,243 5% 6.9% 0.0% 32.8% 20.9% -2,598.2% 4,233.1%
Insurance
MAPFRE MAP 8,635 2% 9.4% 0.0% 34.5% 27.3% -3,145.1% 4,278.1%
Other Financial
BOLSAS Y MERCADOS ESP BOLS 14/07/06 2,524 0% 4.9% 0.0% 30.7% 15.9% -1,952.9% 3,198.8%

** In Millons.

** Annualized return and volatility.
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The statistical significance of the previous estimation is provided in the second step of 
the procedure by implementing Monte Carlo simulations as follows. Once ΩG – Lasso is 
estimated, I move on to compute ρ in accordance to equation (1). Next, I check wheth-
er the elements of ρ are statistically different from zero for a pre-specified level of 
confidence α. To quantitatively determine the significance of each ρij, a non-paramet-
ric kernel density of returns for each stock in the sample is adjusted.7 Then, a sample 
of size 1.000 is independently drawn from each one of those densities. With this arti-
ficial and non-correlated sample of returns, a new partial covariance matrix is com-
puted serving as a null hypothesis for the inference. I do this many times in order to 
obtain an empirical distribution for each ρij. Finally, I calculate the percentiles for each 
of those distributions in accordance with a specified confidence level equal to α. When 
the original estimation of ρij is larger than the percentile just mentioned, such ρij is 
stated as statistically significant and retained as a link between node i and j, otherwise 
the connection between those nodes is discarded.

This 2-step estimation algorithm posits several benefits compared to more tradi-
tional applications. Among them it worth mentioning that it is a totally data-driven 
procedure in which neither topological constraints nor ad-hoc thresholds are im-
posed except for α. Appendix B provides evidence that supports its benefits by prov-
ing the result of its implementation with an artificially created dataset. In what fol-
lows, the PCSNs are constructed in accordance with this methodology.

7 A Gaussian kernel with smoothing parameter equal to 0.2 is assumed.
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5 Empirical Results

The subsequent analysis is divided in two parts. The first one accounts for a static 
study by considering only the 250 most recent trading days (approximately one 
year). The aim is to describe the current state of the Spanish PCSN. The second part 
considers a dynamic perspective of the PCSN and therefore larger time series are 
required. In order to fulfill this data requirement, those firms whose inception date 
falls after the beginning of the dataset are excluded from the analysis. The parame-
ters for the 2-step estimation algorithm are set as follows: 500 repetitions in order to 
obtain the an empirical distribution for each ρij, a significance level of 1% and 10 
fold Cross-Validation.

5.1 Static analysis

The results from the estimation reveal an optimal regularization parameter γ equal 
to 0.042. Figure 1 plots the non-parametric distribution and key descriptive statistics 
for the non-zero partial correlations for this optimal γ. In addition, the distribution 
of direct correlations estimated by means of optimal shrinkage Ledoit and Wolf 
(2004) is included for comparison.

Non-parametric density of partial and direct correlation FIGURE 1

The direct correlation is a symmetric bell-shaped curve that resembles a normal 
density function. Relative to the partial correlation distribution, it shows fatter tails 
with a significantly lower mean value (0.412 vs 0.122). This is reasonable since the 
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latter discards the co-movement of the returns processes due to the common mar-
ket factor. Additionally, note that the direct distribution lies only on the positive 
quadrant while the partial correlation distribution shows negative values as well. 
The full partial correlation matrix and the direct correlation matrix are provided in 
appendix C. From the full matrix of partial correlation, it worth highlighting the 
extremely large value assumed by some of its components related to the banking 
and utility sectors (for the pair (BBVA, SCH) is 0.6. for (BSAB, POP) is 0.3 and 
(ENAG, CTG) is 0.3).

Figure 2 shows the density d and the size of the largest connected component d of 
networks corresponding to different levels of the regularization parameter γ.8 There 
are three aspects that deserve some attention. First, S remains positive even for 
large values of γ evidencing an extremely persistent group of stocks intensively in-
terrelated. This cluster of stocks belongs to the Banking sector as it is clearly seen in 
figure 3 below. Second, there is a non-linear and decreasing relationship between 
the γ and d. More interestingly, the optimal γ (vertical red line) roughly coincides 
with a turning point of d at around 0.15 evidencing a sharp transition between re-
gimes with different slopes. Finally, note that PCSN never becomes connected un-
less γ is set to zero. Therefore, there exists a group of companies that are totally 
disconnected from the structure since they show non-significant partial correlation 
with the rest of the firms in the market.

Network’s measures for different levels of regularization FIGURE 2

The PCSN’s for selected values of γ are depicted in figure 3 where the first one cor-
responds to the optimal PCSN, defined as the one associated with the optimal γ. The 
size of the nodes/stocks in the networks accounts for their (rescaled) market value 
for the last day in the sample. Their colors account for different industries (see fig-
ure caption for more details).

8 The larger the regularization parameter, the larger the weight on the L1-norm restriction which in turn 

increases in the sparseness in the resulting PCSN.
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Networks for selected levels of regularization FIGURE 3

The colors of the nodes correspond to sectors: Industrial (Red), Bank/Savings & Loan (Blue), Utility (Orange), 

Insurance (Green), Other Financial (Grey) and Transportation (Yellow). The size of each node corresponds to 

its (rescaled) market value at Sep30, 2014.

The importance of the Banking sector is noticeable in figure 3. An artificial increase 
in γ eliminates less significant partial correlations. However, the cluster of nodes 
belonging to such sectors remains connected (e.g. SCH, BBVA, CABK, BSAB, POP). 
This gives us some insights about their systemic importance. Following the same 
reasoning, stocks from the utility sector also assume prominent positions in the 
structure (see the cases of TEL and IBE). On the other hand, the more peripheral role 
of the industrial stocks stems from their earlier disconnection from the network, as 
long as γ increases. This happens in spite of the large market capitalization shown 
by some of them (e.g. Inditex). A plausible explanation comes from the logic behind 
the functioning of the Banking sector. Its business is based on the interaction with 
other companies by providing financing and thus can take root in almost any seg-
ment of the economy. The next subsection is devoted to deeper analysis of the cen-
trality of different economic sectors.

Key network measures are reported in table 2. The first four columns account for 
the networks from figure 3. The last column reports the average of the same set of 
measures over 1.000 realizations of networks made at random (Erdös-Rényi net-
work) matched to the density of the optimal one. The evidence supports significant 
differences between the optimal Spanish PCSN and its random counterpart in sev-
eral dimensions. Despite the fact that the largest connected component is barely 
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smaller for the Spanish PCSN (97% vs 99%), such difference is statistically signifi-
cant at conventional levels. As a consequence, its disconnected component is sig-
nificantly larger than a random arrangement (3% vs 1%). This feature confers a sort 
of protection since the cluster of connected nodes is reduced preventing broader 
propagation of an initial shock. The large and significant value of transitivity for the 
Spanish PCSN relative to a random network (21% vs 13%) constitutes another po-
tential source of strength. This is the case since conditioning on the network density, 
producing a large number of triangles, prevents local shocks becoming global by 
containing the former inside a group of tightly interrelated stock. Finally, it is worth 
mentioning that the Spanish PCSN seems to be disassortative (-0.17); highly con-
nected stocks tend to be linked to poorly connected ones. This could be interpreted 
as a sign of weakness since any negative shock in poorly connected stock might be 
transmitted to rest of the market throughout its path toward the hub of the network. 
However, this effect is not statistically significant at conventional levels.

Network’s measures for different levels of regularization* TABLE 2

Optimal 0.30 0.5 0.55
Random 
Network

Basics

Nodes 35 35 35 35 35

Links 77 48 15 8 76.9

Density 0.13 0.08 0.03 0.01 0.13

Mean Degree 4.40 2.74 0.86 0.46 4.40

Distance

Diameter 5

(0.21)

7 4 3 4.989

Mean Distance 2.50

(0.43)

3.41 2.00 1.80 2.49

Components

Largest Comp 0.97

(0.06)

0.91 0.26 0.14 0.99

Isolates 0.03

(0.05)

0.09 0.63 0.69 0.01

Patterns of Connectivity

Transitivity 0.21

(0.00)

0.25 0.11 0.00 0.13

Assortativity -0.17

(0.15)

-0.07 0.10 -0.56 -0.06

* Measures corresponding to the weigthed version of the PCSN.

In parenthesis the p-values of the measures relative to the random counterpart.

5.1.1 Systemic Stocks in the Spanish Market

The systemic importance of a firm assesses its potential to greatly affect the perfor-
mance of the entire market. In what follows I measure the systemic importance of 
stocks by means of the places they occupy in the Spanish PCSN which in turn are 
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quantified by the eigenvector centralities, see section 3. Therefore, those stocks cen-
trally located inside the PCSN rank high as systemic firms and as a consequence they 
could potentially cause large market movements.

The left-hand panel of figure 4 shows a scatter plot between a firm’s centrality and 
its market capitalization (logarithmic scale) for the last day in the sample. The colors 
of the dots correspond to different industrial sectors (see the legend’s figure for 
more details). The right-hand panel of the same figure depicts the centrality of each 
stock with their corresponding tickers (see table 1).

Relationship between centrality, market capitalization and FIGURE 4 
economic sectors

The colors of the nodes correspond to sectors: Industrial (Red), Bank/Savings & Loan (Blue), Utility (Orange), 

Insurance (Green), Other Financial (Grey) and Transportation (Yellow).

From figure 4, the positive relationship between market capitalization and stock 
centrality is evident. This pattern is also clear in table 3 which averages the same 
information at sector level. Additionally, note that the Banking sector is by far the 
most systemic one, followed by Insurance (with only one firm) and Utility sectors. 
It is particular interesting to note the case of the two most central firms in the mar-
ket, Banco Santander and BBVA, showing a clear distinct pattern from the rest. 
Given this implicit hierarchy, a convenient macroprudential regulation should use 
such evidence with the aim of promoting a stable and sound stock market. Appen-
dix D provides the full list of firms with their corresponding centrality score.

Mean and total centrality by economic sectors TABLE 3

Industry Number of Firms

Eigenvector Centrality Market Value*

Total Mean Total Mean

Other Financial 1 0.037 0.037 2,524.4 2,524.4

Transportation 1 0.038 0.038 9,611.1 9,611.1

Insurance 1 0.110 0.110 8,635.1 8,635.1

Utility 5 0.481 0.096 130,229.9 26,046.0

Industrial 20 0.812 0.041 199,877.9 9,993.9

Bank/Savings & Loan 7 2.125 0.304 217,833.3 31,119.0

Total 35 3.602 0.103 568,711.5

* In Millons.
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In order to investigate deeply the relationship between market capitalization and 
centrality, the cross-sectional regression (7) is estimated by OLS with the aim of 
separating the market capitalization effect from effects of economic sectors. In this 
expression, Centralityi and MVi corresponds to the eigenvector centrality and mar-
ket value of firm i, respectively. Dj represents dummy variables for economic sectors 
where Ind={Insurance (Ins), Utility (Ut), Industrial (Ind), Transportation (Tra), Other 
Financial (OF)}. Note that significant and negative (positive) coefficients indicate 
lower (higher) centrality relative to the banking sector. Table 4 reports the results of 
the estimation

 
β β

∈

= + + +∑0 1ln( )i i j i
j Ind

Centrality MV D e
 

(7)

A positive and statistically significant coefficient for β1 is found evidencing that 
firms with large market capitalization tends to present high centrality scores 
which is consistent with the left-hand panel of figure 4. Further, the coefficient 
for the economic sector dummy variables are all negative and statistically signifi-
cant at conventional levels. Then, the large centrality score of the banking sector 
is in part explained by its high market capitalization but it is also inherent to its 
business.

Regression of centrality on market capitalization and economic sectors TABLE 4

β0 β1 βIns βUt βInd βTra βOF R^2 Adj F (pvalue)

-0.156 0.047 -0.156 -0.205 -0.203 -0.248 -0.180 0.670 0.000

(-1.086) (3.305)*** (-1.881)* (-4.569)*** (-5.286)*** (-2.997)*** (-2.062)**

Significance * p<0.10, ** p<0.05, *** p<0.01.

5.1.2 International evidence

In order to compare the Spanish PCSN with other structures, the same methodology 
is applied to the set of stocks constituting the market indexes FTSE-100, CAC-40, 
DAX-30 and FTSE-MIB as representatives of the UK, French, German and Italian 
market, respectively. I rely on Datastream to construct similar datasets as in the 
Spanish case covering the exact same time period. In table 5 a comparison between 
the network topologies of theses stock markets is provided.

Notice that each of the network presents a sizable largest connected component 
and also a high value of transitivity. The largest connected component of the 
UK network is somehow smaller 82% which could be interpreted as a source of 
strength as it was commented before. In terms of connectivity, the Spanish and 
German structured show the largest density (13%) while the UK network is the 
less connected one (3%). This feature is also evident in the mean distance 
where it is 2.50 for the case of Spanish PCSN while it is 5.00 for the British 
network. Note, moreover, that the only market showing a disassortative ar-
rangement is Spain which could comprise a source of weakness, as was com-
mented before.
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Network’s measures - International comparison TABLE 5

Spain UK France Germany Italy

Basics

Nodes 35 101 40 30 37

Links 77 136 70 58 66

Density 0.13 0.03 0.09 0.13 0.10

Mean Degree 4.40 2.69 3.50 3.87 3.57

Distance

Diameter 5 11 6 7 7

Mean Distance 2.50 5.00 2.84 2.86 3.02

Components

Largest Comp 0.97 0.82 0.93 1.00 0.97

Isolates 0.03 0.03 0.03 0.00 0.03

Patterns of Connectivity

Transitivity 0.21 0.19 0.09 0.21 0.15

Assortativity -0.17 0.04 -0.07 0.07 0.12

* Measures corresponding to the weigthed version of the PCSN.

The association between market capitalization and centrality is quantified in table 6. 
This table reports the estimation of equation 7 for each of the markets under analy-
sis. The coefficient β1 is positive and significant for all PCSN except the French case 
which is non-statistically significant. In general terms, the sectorial dummies tend 
to be negative and statistically significant for French, German and Italian PCSN as 
they are for the Spanish case evidencing the prominent role of the banking system. 
However, a distinctive feature in the French PCSN is that its Insurance sector is on 
average more central than the Banking sector in accordance to the positive and sig-
nificant coefficient βIns. This result should be taken with caution since there is only 
one stock representing that sector. Interestingly, the UK market behaves in a totally 
different way since none of the sectorial dummy variables are statistically different 
from zero. Therefore, for the UK market, members of the banking sector do not 
necessarily take central positions in the network. This result could be driven by the 
low connectivity level found in the UK PCSN (3%).

In order to facilitate the comparison, figure 5 plots the mean eigenvector centrality at 
sector level for each of the countries in the sample. I normalize the eigenvector cen-
tralities by requiring that the sum of its components equals the number of stock in 
each market, thus accounting for different network sizes. The banking sector assumes 
a critical role in Spain, France and Italy.9 For the German case, companies from the 
Utility sector show on average the highest central position. The UK network presents 
a distinctive behavior since the centrality in this market is roughly evenly distributed 
inside the industrial sector. These structural differences in the PCSN could shed some 
light on the differential response of European stock markets when facing the same 
shock. Further analysis is required in this regards. Appendix F provides descriptive 
tables of centrality and market capitalization for each country in the study.

9 In this calculation, the increased centrality of the Insurance sector in France does not capture the evidence 

presented in table 6. Probably, this is due to the fact that this sector is represented by only one firm.
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Regression of centrality on market capitalization and economic TABLE 6 
sectors - International Comparison

Spain UK France Germany Italy

β0 -0.156

(-1.086)

-0.156

(-1.755)*

0.153

(1.307)

-0.247

(-1.538)

-0.038

(-0.417)

β1 0.047

(3.305)***

0.020

(1.836)*

0.000

(0.005)

0.048

(2.516)**

0.021

(1.682)*

βIns -0.156

(-1.881)*

-0.025

(-0.814)

0.181

(3.011)***

-0.022

(-0.321)

-0.050

(-1.003)

βUt -0.205

(-4.569)***

-0.040

(-1.045)

-0.133

(-3.099)***

0.066

(1.141)

-0.080

(-2.224)**

βInd -0.203

(-5.286)***

0.006

(0.286)

-0.079

(-3.162)***

-0.110

(-2.837)***

-0.107

(-4.469)***

βTra -0.248

(-2.997)***

-0.019

(-0.385)

-0.124

(-2.151)**

βOF -0.180

(-2.062)**

-0.018

(-0.551)

-0.101

(-1.825)*

0.028

(0.628)

R^2 Adj 0.670 0.007 0.743 0.384 0.702

F (pvalue) 0.000 0.354 0.000 0.004 0.000

Significance * p<0.10, ** p<0.05, *** p<0.01.

Centrality by economic sectors – International comparison FIGURE 5
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5.2 Dynamic analysis

This section studies the dynamical properties of the Spanish PCSN and discusses 
its stability through time by relying on a moving window approach as follows. 
The 2-step estimation algorithm (see section 4) is implemented upon moving win-
dows of returns of 250 trading days of length. Since a one-day displacement step 
is considered, 2.336 PCSN are estimated with their corresponding network meas-
ures and firm’s centrality scores. Since large time series of data are required in the 
section, those firms with inception dates later than Nov 1, 2004 (10 firms) are 
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discarded for this analysis. I define (negative) market events as market index re-
turns lower than three standard deviations computed for the entire sample period. 
The dates for such market events are plotted in the following figures as vertical 
black lines.

Let us start by describing figure 6 which plots the time series of the mean of 
non-zero partial correlations and the mean of direct correlations estimated using 
optimal shrinkage Ledoit and Wolf (2004). The colored regions account for the 
corresponding +/- one standard deviation away from the corresponding mean. 
As expected, the mean direct correlation shows three humps roughly coinciding 
with periods of high financial distress. The mean partial correlation presents a 
totally different behavior since its time evolution remains quite stable with aver-
age level around 0.12.

Time series of mean correlation and +/- one standard deviation FIGURE 6

The time series of three selected network measures, Density, Mean Distance and 
Transitivity, are depicted in figure 7. Light-red lines accounts for the exact quantities 
while the dark-red line corresponds to the 60-days centered moving average. Visual 
inspection does not allow us to conclude about any clear pattern in the data regard-
ing the performance of those network measures around market events. Neverthe-
less, section 6 provides rigorous statistical assessment in this respect.

Despites the comments already mentioned about figure 7, a quite clear pattern 
arises when the centrality of the banking industry (mean of the centrality of the 
firms belonging to this sector) is under analysis. Figure 8 plots the time series of 
the mean centrality of the banking sector in light-red and its 60-days center mov-
ing average in dark-red. Note that negative market shocks tend to occur when the 
centrality of the banking sectors presents a downward slope. In other words, be-
fore a market event, the centrality of the banking sectors reaches a peak and starts 
to decline afterwards. In fact, there is just one episode in mid-2010 for which this 
observation is not true. As it was mentioned, section 6 investigates this phenom-
enon further.
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Time series of selected network’s measures FIGURE 7

Network Measure through time in light-red and the related 60 day centered moving average in dark-red.

Banking sector centrality through time FIGURE 8

A final comment regards to the stability of the PCSN through time. Since each of the 
PCSN is composed of exactly the same set of stocks/nodes, the only elements that 
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change from period t-1 to t are the links in subsequent networks. Therefore, I will 
measure the stability of the Spanish PCSN as the proportion of active links in period 
t-1 that remains active in t. To be more concrete, let us define the set of PCSN in-
dexed by time as { }ψ ϕ ϕ ϕ= …1 2 2337, , ,u u u  and their corresponding set of links as 

{ }Φ = …� � �1 2 2337, , , . The intersection network in period t, ϕ� ut , is built upon the inter-
section of two subsequent set of links as � � �t t t−= ∩� 1 . Then the stability ratio SRt in 
period t is given by formula (8) and its time series is plotted in figure 8.

 
−

=
��
� 1

#    

#    
t

t
t

of elements in
SR

of elements in  (8)

Stability ratio through time FIGURE 9

As before, the light-red lines correspond to the exact stability ratio in period t while 
the dark-red line accounts for its 60-days centered moving average. The mean and 
standard deviation of the centered SRt is 93% and 4%, respectively. The fact that 
more than 90% of the links remains active from subsequent networks confers a sort 
of structural stability through time to the Spanish PCSN. Note also that the mini-
mum values of SRt are reached in the periods following the inclusion of Bankia as a 
new constituent of the IBEX-35, say after Ago-2011. In fact, the centered SRt shows 
a negative trend starting in Ago-2011 that reverts by the end of that year (values of 
this variable below 90% corresponds to the period Oct-2011 until Feb-2012). In this 
regard it could be said that the market required approximately 6 months to digest 
such network reconfiguration.
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6 Network measures as leading indicators of 
market instability

The extent to which a set of network measures might be used as leading indicators 
of market distress is investigated in this section. The behavior of three network-
based measures, Density, Mean Distance and Transitivity, around negative market 
events is depicted in figure 10.

Behavior of network’s measures around a market event FIGURE 10

Figure 10
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In the above figure market events are aligned at day zero and 100 trading days be-
fore and after such an event are considered. This alignment is plotted in the x-axis. 
The y-axis shows the mean of each network-based measure in dark-red, the mean of 
its corresponding 60-days length moving average in blue and the region comprising 
+/- one standard deviation away from mean in light-red. In order to account for dif-
ferent levels of the network measure when a market event takes place, I normalize 
such measures to 1 in such dates.

From figure 10 there is no identifiable pattern for the transitivity. However, this is 
not the case for the density and the mean distance. Considering the network density, 
let us note that it tends to be above its mean value at the moment of the negative 
shock for at least 30 trading days before such event. For the mean distance, the re-
verse is true since about 30 trading days before a large and negative market move-
ment this measure tends to be below its mean value at the moment of the negative 
shock. Therefore, it seems that the Spanish PCSN presents particular features that 
seem to anticipate market distress episodes. In particular it could be said that just 
before a negative event, the stock network becomes densely connected while short-
ening its mean distance. This symmetric behavior is expected since these two vari-
ables shows a strong negative correlation, see appendix E.

In order to better understand this phenomenon two alternative and complementary 
approaches are pursued. Subsection 6.1 shows the results of the estimation of a 
Probit model where dependent variable assumes values equal to one when the mar-
ket suffers a negative return larger than three standard deviations (market event) 
and zero otherwise. In this specification, the set of independent variables are the 
lagged network measures from figure 10. In subsection 6.2, it is assumed that the 
daily return process follows an ARCH model where the equation of the conditional 
variance includes as independent variables the same (lagged) network measures as 
in the previous specification.

6.1  A Probit model for negative market movement with network 
measures as independent variables

I estimate a Probit model to quantitatively assess the extent to which lagged net-
work-based measures can predict large and negative market movements. The de-
pendent variable is dichotomous assuming value one if the market suffers from a 
negative return larger than three standard deviations (computed from the entire 
dataset) and zero otherwise. As explanatory variables I include the two of the net-
work measures depicted in figure 10, Density and Transitivity10. Additionally, the 
centrality of the banking sector is also introduced as an independent variable. Since 
predictability is at the center of the analysis, I consider lags at 10 and 30 trading 
days in setting the explanatory variables. Given that the set of regressors shows a 
significant level of autocorrelation (see appendix E), standard errors tend to be 
downward biased leading to incorrect t-statistics. In order to account for the correc-
tion in the standard errors due to heteroskedasticity and autocorrelation, I imple-
ment bootstrap methods as suggested by Berg and Coke (2004).

10 I discard the mean distance as an additional independent variable given the high negative correlation 

between this variable and density (see Appendix E).
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Table 7 reports the results of the estimation of three different models that progres-
sively include the independent variables. Model 1 presents positive and significant 
effects of network density on the probability of a large and negative market move-
ment. Therefore, a dense PCSN shows a higher probability to suffer a large negative 
return, an observation consistent with the evidence presented in figure 10. The inclu-
sion of the banking centrality as an additional independent variable in model 2 also 
shows a positive and significant effect at lag 30 while retaining the significance of 
network density. Therefore, a network more densely connected in which the banking 
sector assumes a central position is consistent with an increased probability for a 
large and negative shock in the market. Finally, in model 3, all of the considered net-
work measures are included in the estimation. However, transitivity does not show 
any significant coefficient for any of its lags, an observation which is also consistent 
with figure 10. In any case, the conclusions regarding the signs of the coefficients and 
their significance for the case of density and banks centrality remain valid.

Results of Probit model’s estimations TABLE 7

Density Model 1 Model 2 Model 3

Lag 10 21.23

(2.2)**

18.32

(1.77)*

18.81

(1.83)*

Lag 30 21.94

(2.37)**

25.14

(2.27)**

24.93

(2.28)**

Banks Centrality

Lag 10 -6.52

(-1.22)

-6.17

(-1.12)

Lag 30 10.27

(2.02)**

10.00

(1.85)*

Transitivity

Lag 10 -1.22

(-0.53)

Lag 30 0.57

(0.22)

Likelihood Ratio Index 0.099 0.127 0.129

LLR p-value 0.000 0.000 0.000

SE estimated by Bootstrapping. Significance * p<0.10, ** p<0.05, *** p<0.01.

In summary it could be said that there is some evidence that network-based meas-
ures are a leading indicator of large market distress events. In particular, the statisti-
cal results show that the probability for a large negative movement increases when 
Spanish PCSN becomes more densely connected. In cases where the banking sector 
assumes more central position in the structure, the effect is reinforced by increasing 
further the probability of this type of episodes.

6.2  ARCH models for the Spanish Market with network measures as 
independent variables

The heteroskedasticity of the return process is a well-documented phenomenon in 
the econometric literature, Hamilton (1994). Figure 11 plots the time series IBEX-35 
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return where such empirical regularity is observed. The periods mid 2008-2009 and 
2012-2013 are characterized by a high volatile regime while the period 2006-2008 
shows a tranquil market.

Time series of daily market returns (IBEX-35) FIGURE 11

Following the tradition in the econometric literature, (see Bollerslev (1987) and 
Hamilton (1994)) I assume that return process is described by an ARCH(q) model 
specified in equations (9) to (11) where the error term ηt comes from a t-student 
distribution with v degrees of freedom. The novelty of this specification arises from 
the inclusion in the equation of the conditional variance σt

2 (equation 11) lagged 
network measures as explanatory variables. As in the previous subsection, the set of 
lagged network measures considered for the experiment is N={Density, Transitivity, 
Centrality of the Banking Sector}.

 ε= +t r tr c  (9)

 ε σ η=t t t  (10)
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i n N j

c n
 

(11)

The model (9) to (11) is estimated by maximizing the log likelihood where v is con-
sidered as an additional parameter. The order of the process is set to be equal to 5 
since in non-tabulated results, the coefficients αi beyond that period are not statisti-
cally significant. Table 8 shows the estimated parameter for three models with the 
sequential inclusion of Density, Centrality of the Banking Sector and Transitivity as 
independent variables.

Model 1 considers the lags of density as the only network-based independent varia-
bles. In this model, lag 10 shows a positive and statistically significant coefficient 
which means that denser networks increased the conditional market volatility. In 
model 2, the centrality of the banking sector is considered as an additional inde-
pendent variable. A positive and statistically significant coefficient is found for its 
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lag 30. Moreover, the sign and significance of the density at lag 10 remains. The 
comparison between model 1 and 2 from table 7 with those models from table 8 
confers some robustness on the results. Therefore, denser networks where the cen-
trality of the banking sector is high show larger probabilities of a strong negative 
movement which could be explained by their positive effect of those variables on 
the conditional market volatility.

Model 3 in table 8 presents the major difference with respect to table 7. In the for-
mer table, the transitivity level at lag 30 shows a negative and significant effect on 
market variance. At first this evidence might seem to be counterintuitive, but as 
discussed in Newman and Park (2003), large transitivity is consistent with networks 
arranged in communities. In other words, an increase in the number of triangles in 
the network, controlling by its density, leads to an internal organization of the struc-
ture characterized by groups of stocks tightly interrelated. This would undermine 
the possibility of macro effect as a consequence of shocks at micro level and thus 
reducing the conditional market variance.

Results of ARCH model’s estimations TABLE 8

Density Model 1 Model 2 Model 3

Lag 10 14.67

(4.12)***

9.64

(2.76)***

12.83

(3.21)***

Lag 30 2.91

(0.71)

-1.21

(-0.29)

-0.85

(-0.22)

Banks Centrality

Lag 10 0.40

(0.33)

1.24

(0.89)

Lag 30 3.73

(3.12)***

3.82

(2.92)***

Transitivity

Lag 10 0.23

(0.23)

Lag 30 -2.33

(-2.51)**

Squared Residuals

Lag 1 0.08

(2.77)***

0.07

(2.51)**

0.07

(2.45)**

Lag 2 0.14

(4.17)***

0.13

(3.94)***

0.12

(3.91)***

Lag 3 0.16

(4.82)***

0.15

(4.63)***

0.14

(4.55)***

Lag 4 0.21

(5.77)***

0.19

(5.6)***

0.18

(5.38)***

Lag 5 0.16

(4.51)***

0.16

(4.51)***

0.15

(4.51)***

Others Parameter

T-Student df 6.33

(6.51)***

6.64

(6.39)***

6.69

(6.28)***

Akaike criterion 3.427 3.422 3.421

Schwarz criterion 3.452 3.452 3.456

Log Likelihood -3,893.7   -3,885.5   -3,882.7   

Significance * p<0.10, ** p<0.05, *** p<0.01.
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7 Conclusion and Future Research Lines

Network theory as a general analytic framework has been considered extremely use-
ful in several branches of sciences. Recently, the financial research community has 
started to adopt it in order to get new and valuable insights in the context of stock 
markets. The current paper proposes a 2-step algorithm to estimate the Spanish 
Partial Correlated Stock Network. This algorithm is designed to overcome or at least 
to attenuate the shortcomings of standard techniques. The estimated network is 
formed by the constituents of IBEX-35 as nodes and statistically significant partial 
correlations as links connecting pairs of them. Once the network is in place, differ-
ent network-based measures are computed.

Three major results come from the empirical study. First, consistent with general 
wisdom, the banking sector assumes a central position in the network and thus 
could severely affect the entire market. Particularly interesting is the case of Banco 
Santander and BBVA given their extremely high centrality scores. Therefore, an ap-
propriate macroprudential regulation scheme should accommodate this evidence in 
order to consider the differential effect of fundamental market players. Second, the 
investigated network is found to be quite stable over time and presents properties 
that are inconsistent with a random arrangement. It is worth mentioning that the 
largest connected component is smaller, and the transitivity level is larger in com-
parison with those features coming from Erdös-Rényi networks. International com-
parability is also addressed by identifying common traits between the PCSN from 
Spain, UK, France, Germany and Italy. All of such networks present sizable values 
for the largest connected component and transitivity. However, the Spanish and 
German structures are the more densely connected while the UK network is ex-
tremely sparse. The central positions occupied by different economic sectors in 
those structures reveal a distinctive organization of such networks which prevents 
simple comparisons. Finally, there is also evidence that the current state of the 
Spanish PCSN, captured by key network measures, could be used as leading indica-
tors of market distress. Therefore, including a set of network-based measures as part 
of the early-warning tool box for market regulators seems to be a suitable choice in 
order to properly assess systemic risk.

Two main research lines are left for future studies. The first one consists of an in-
depth analysis of the similarities and differences between the largest stock markets 
around the world based on this unified framework. Such methodology could shed 
some light on the heterogeneous performances of different countries across the re-
cent financial crisis. Another promising research line relates to the consideration of 
a directed stock network instead of the undirected one which is analyzed in the cur-
rent paper. The possibility of including directed links in the structure would allow 
us to enrich the framework and to complement the conclusions already provided in 
this paper. For example, it might be possible to differentiate those stocks that tend 
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to initiate a shock, “threatening stocks”, from those that tend to receive it, “vulnera-
ble stocks”. Therefore, the study of stock markets as directed networks should not be 
considered as a mere intellectual curiosity but instead as a valuable framework with 
the potential to enhance our understanding on the nature of the firms as parts of the 
entire market.
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Appendix A

In this appendix I follow Stevens (1998) to show the connection between the partial 
correlations of returns and the regression coefficients resulting from regressing the 
return of a particular stock with the rest of them.

Let us assume that the correlation matrix of returns is given by the n × n matrix 
σ⎡ ⎤Σ = ⎣ ⎦ij  which could be partitioned as follows:

 ⎣ ⎦
Σ Ó

σ σ

σ −

⎡ ⎤
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11 1

1 1

j

j n  
(A.1)

where σ11 is the variance of returns for asset 1, σ1j is a 1 × n – 1 vector of covariance be-
tween stock 1 and the other n – 1 stocks in the sample and Σn – 1 corresponds to the 
sub-matrix of Σ resulting from the elimination of its first row and column. Defining the 
inverse of the covariance matrix as ⎡ ⎤Ω = ≡ Σ⎣ ⎦ω −1

ij , its partitioned form is written as
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Since Ω*Σ = I, the next two expressions could be derived (first row of Ω with the 
columns of Σ)

 ω ω σ ω σ1 11 1 1 11 1 1j j n j n= − = −Σ Ω−
− −
1  (A.3)
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Note that the term 1 1j nΣσ −
−
1  in A.3 corresponds to the row vector of the regression 

coefficients that result from regressing stock 1 returns on the rest of the stocks. We 
call this vector β1'. Additionally, by definition R2 in such regression is given by
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Therefore, equation (A.4) is restated as 
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where σ2
e1 accounts for the proportion of the total return’s variance of stock 1 that is 

not explained by the regression or the variance of the residual. Finally, introducing 
expression A.6 into A.3
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Although A.6 and A.7 assumes the dependent variable in the regression is the return 
of stock 1, a convenient permutation of row and columns allows us to fully charac-
terize Ω as follows:
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On the other hand, we have defined the matrix of partial correlation coefficients 
between stocks as

 ΔΩΔρ ρ⎡ ⎤= = −⎣ ⎦ij  (A.9)

where ( )Δ ω= 1 / iidiag . Simple calculations show that
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Appendix B

This appendix is devoted to testing the estimation methodology explained in section 
4 by means of a toy exampleI proceed as follows. The “skeleton” of the market is 
given by a structure of a balance tree with branching and height equal to 3 and 4 
respectively, as in figure B.1. Therefore, the network is composed of 40 stocks and 
39 links. Starting from the center of that network, the links corresponding to the 
first, second, and third step away from it are given values 0.5, 0.3 and 0.15, respec-
tively (see black letters in figure B.1). These numbers are going to take the role of the 
partial correlations between pair of the stocks. The weight for the rest of the links 
not considered in figure B.1 are assumed equal to zero.

With this structure at hand and the weighed adjacency matrix recovered using the 
expression (1), I compute the associated real covariance matrix.11 Additionally, I as-
sume a mean vector with components equal to 0.08 for the central node and 0.06, 
0.04 and 0.02 for nodes located one, two, and three steps away from the center (see 
red figures in figure B.1). Using this covariance matrix and the commented mean 
vector as the real parameter of the process, I draw a sample of size 1.000 from a 
multivariate normal distribution. Next, I implement the 2-step estimation methodol-
ogy explained at the beginning of this section assuming a confidence level of 1% 
upon this artificial dataset in order to estimate the PCSN.

Artificial partial correlation network FIGURE B.1

11 Since the matrix Δ only takes the role of normalization in equation (1), I consider as the relevant covari-

ance just –ρ–1 which is equivalent to saying that ρij = βij.
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Table B.1 provides a general assessment of the estimation performance by present-
ing the number of links correctly and incorrectly detected by the algorithm. Panel A 
shows the result of the estimation before filtering out the non-significant partial 
correlations. Panel B presents the same information after implementation of Monte 
Carlo Simulations. 

Estimation algorithm’s performance TABLE B.1

Initial Estimates (Panel A)

Real Structure

Estimated Structure Non Null Null Total

Non Null 39 316 355

Null 0 425 425

Total 39 741 780

Final Estimates - Montecarlo Simulation (Panel B)

Real Structure

Estimated Structure Non Null Null Total

Non Null 37 21 58

Null 2 720 722

Total 39 741 780

From panel A in table B.1, the first thing to notice is that the initial estimation does 
a good job of identifying the true network, although it is not perfect. Out of the 39 
links that actually exist, all of them were initially captured. Its major problem is due 
to the number of links that the algorithm erroneously identified, say 316, leading to 
a network density of 45.5%. In general terms, the initial estimation provides good 
results in selecting the links that actually exist and discarding those not included in 
the real structure. The hit ratio of this estimation is (39+425)/780=59.5%.

Panel B from table B.1 shows the benefits of using Monte Carlo Simulation for un-
covering the real network structure. The major change from panel A to panel B is 
due to the reduction of erroneously detected links. Such a reduction reaches 93%, 
from 316 to 21 leading to a higher hit ratio (37+720)/780=97.1%. Unfortunately, the 
algorithm discards two links that actually exist in the structure. Overall, the 2-step 
estimation methodology performs well and seems to be a suitable tool to uncover 
the hidden stock network.
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Appendix D

Centrality for each of the firms in IBEX-35 considering the most recent 250 trading 
days in the sample

Centrality by firm TABLE D.1

Ticker NAME Industry Centrality

SCH BANCO SANTANDER Bank/Savings & Loan 0.593

BBVA BBV.ARGENTARIA Bank/Savings & Loan 0.557

CABK CAIXABANK Bank/Savings & Loan 0.249

POP BANCO POPULAR ESPANOL Bank/Savings & Loan 0.254

BKT BANKINTER 'R' Bank/Savings & Loan 0.227

BSAB BANCO DE SABADELL Bank/Savings & Loan 0.179

TEF TELEFONICA Utility 0.181

MAP MAPFRE Insurance 0.110

MITT ARCELORMITTAL (MAD) Industrial 0.111

IND INDITEX Industrial 0.062

BKIA BANKIA Bank/Savings & Loan 0.065

GAM GAMESA CORPN.TEGC. Industrial 0.073

REP REPSOL YPF Industrial 0.076

IBE IBERDROLA Utility 0.145

TL5 MEDIASET ESPANA COMUNICACION Industrial 0.055

ACE ABERTIS INFRAESTRUCTURAS Industrial 0.041

IDR INDRA SISTEMAS Industrial 0.053

TECN TECNICAS REUNIDAS Industrial 0.055

FERC FERROVIAL Industrial 0.036

OHL OBRASCON HUARTE LAIN Industrial 0.042

ANA ACCIONA Industrial 0.047

SCYR SACYR Industrial 0.027

PROB GRIFOLS ORD CL A Industrial 0.026

AMS AMADEUS IT HOLDING Industrial 0.024

IAG INTL.CONS.AIRL.GP. (MAD) (CDI) Transportation 0.038

CTG GAS NATURAL SDG Utility 0.059

ENAG ENAGAS Utility 0.055

ABS ABENGOA B SHARES Industrial 0.017

REE RED ELECTRICA CORPN. Utility 0.041

ACS ACS ACTIV.CONSTR.Y SERV. Industrial 0.021

BOLS BOLSAS Y MERCADOS ESPANOLES Other Financial 0.037

FCC FOMENTO CONSTR.Y CNTR. Industrial 0.017

DIA DISTRIBUIDORA INTNAC. DE ALIMENTACION Industrial 0.022

VIS VISCOFAN Industrial 0.006

JAZ JAZZTEL Industrial 0.000
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Appendix E

Correlation between regressors TABLE E.1

Density Mean Distance Transitivity CentralityBank

Density

Mean Distance -0.702   

Transitivity  0.178    0.210   

CentralityBank  0.153    0.147    0.368   

Autocorrelation function of regressors FIGURE E.1
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Appendix F

Mean and total centrality by economic sectors - France TABLE F.1

France Number of Firms

Eigenvector Centrality Market Value*

Total Mean Total Mean

Other Financial 1 0.049 0.049 19,969.1 19,969.1

Transportation

Insurance 1 0.335 0.335 47,251.2 47,251.2

Utility 3 0.071 0.024 127,758.0 42,586.0

Industrial 32 2.413 0.075 863,541.5 26,985.7

Bank/Savings & Loan 3 1.302 0.434 128,771.3 42,923.8

Total 40 4.171 0.104 1,187,291.0

* In Millons of €.

Mean and total centrality by economic sectors - Germany TABLE F.2

Germany Number of Firms

Eigenvector Centrality Market Value*

Total Mean Total Mean

Other Financial

Transportation 2 0.162 0.081 36,468.0 18,234.0

Insurance 2 0.468 0.234 85,546.1 42,773.0

Utility 3 0.915 0.305 100,876.6 33,625.5

Industrial 21 2.487 0.118 654,366.7 31,160.3

Bank/Savings & Loan 2 0.327 0.163 51,514.2 25,757.1

Total 30 4.359 0.145 928,771.7

* In Millons of €.

Mean and total centrality by economic sectors - Italy TABLE F.3

Italy Number of Firms

Eigenvector Centrality Market Value*

Total Mean Total Mean

Other Financial 2 0.243 0.122 7,011.4 3,505.7

Transportation

Insurance 2 0.210 0.105 31,034.9 15,517.4

Utility 6 0.399 0.067 87,142.5 14,523.7

Industrial 20 0.543 0.027 194,897.5 9,744.9

Bank/Savings & Loan 7 2.266 0.324 95,289.8 13,612.8

Total 37 3.662 0.099 415,376.0

* In Millons of €.
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Mean and total centrality by economic sectors - UK TABLE F.4

UK Number of Firms

Eigenvector Centrality Market Value*

Total Mean Total Mean

Other Financial 8 0.0033 0.0004 44,977.0 5,622.1

Transportation 3 0.0013 0.0004 17,665.3 5,888.4

Insurance 10 0.0371 0.0037 104,199.3 10,419.9

Utility 7 0.0003 0.0000 159,222.0 22,746.0

Industrial 68 2.6636 0.0392 1,219,609.4 17,935.4

Bank/Savings & Loan 5 0.0012 0.0002 263,657.1 52,731.4

Total 101 2.7068 0.027 1,809,330.2

* In Millons of £.
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